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AbsIracL Recently, experiments on expanded fluid mereuly, and simulations of alkali 
metals in liquid ammonia and in molten alkali halides, have motivated interest in the 
passibility of a Frenkel excitortic insulator (€1) phase. In this paper, we discuss several 
a s p l s  of a model for describing such a phase. We choose a model Hamiltonian which 
is the asymptotically exact low-density form for a system of atoms each possasing an sp3 
basis, and present two methods of analysis. The pairing heofy antres on the broadening 
of the S - P atomic transition into exciton bands, which, as i s  knom, may lead to the 
formation of a FEnkeI El phase. We analyse Im, corrections to the traditional exciton 
picture: (i) double-exciUlion pmcesses, which are responsible for the van der Waals 
stabilization energy, are shown to halve the density predicted for the transition to an 
El phase; (ii) correct incorporation of non-boson statistics for the exciton operators i s  
argued lo  drive the transition from first order to second order. We also analyse the 
model Hamiltonian via a Hanree approximation, which proves to be the more tractable 
method, and funher allows an explicit description of the €1 phase itself. The validity of 
the Hanree approximation is justified by comparison with the pairing theory. 

1. Introduction 

In 1963, Knox [l] commented that a new phase might occur in indirect semiconductors 
if the binding energy of an exciton of the system becomes greater than the single- 
particle band gap. This new phase, termed an excitonic insulator (El), would have 
a ground state containing a macroscopic number of excitons. In subsequent years, 
several papers were written (see, e.g., 12-51) on the possible existence of an El phase 
constructed from the condensation of Mott-wdnnier excitons. 

More recently, results from several experiments and simulations have motivated 
interest in the possible existence of a Frenkel EI phase. Frenkel excitons correspond 
to the tightly bound, small-radius limit of an exciton, and are generally associated 
with molecular crystals such as naphthalene and anthracene, or with liquids. The 
dielectric anomaly observed in expanded fluid mercury 161 has been ascribed to a 
transition from the low-density insulating phase to a Frenkel EI phase 17-10] in which 
each mercury atom is associated with a dipole moment, although other explanations 
have been given [6, 11-13]. Computer simulations of alkali metals in liquid ammonia 
[14-16] and in molten alkali halides [17] have yielded clear examples of dipolar 
Frenkel El phases, with recent experimental support in the latter case [IS]. Finally, 
the formation of a Frenkel El phase has also been suggested as a possible explanation 
of the observed properties of a number of solid systems [19-21]. 
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A simple physical picture for the formation of a dipolar Frenkel El phase may be 
given along the lines suggested by Logan and Edwards [U, 221. Consider a system in 
which the normal ground state of each constituent atom or molecule is a spherically 
symmetric S state. We suppose that there is a low-lying P state available. Although 
neither the S state nor the P state possess a dipole moment, a hybrid of these two 
states does. The atomic dipole moment of this hybrid would polarize its surroundings 
and the interaction energy between the dipole and its polarized surroundings may be 
sufficient to overcome the hybridization energy needed to form the dipole in the first 
place. If this is the case, then a dipolar state in which each atom exists as a hybrid 
of the normal ground state and an excited state may become the ground state of 
the system. Logan and Edwards [15, 221 employed results from continuum dielectric 
theory to estimate the stabilization energy arising from the interaction between a 
dipolar atom and its polarized surroundings. They concluded that under certain 
conditions the stabilization energy would be sufficient for the formation of a dipolar 
Frenkel EI ground state. 

Detailed microscopic formulations of the problem have also been given [23-26]. 
Hall and Wolynes [24, 251 introduced a model in which the instantaneous dipole 
of an atom occupies discrete vertices of a cube centred on the atom, and painvie 
interactions between these dipoles provide the stabilization energy needed for the 
formation of permanent dipoles. The existence of an El phase was shown via path 
integral quantum Monte Carlo simulations of the model system. Xu and Stratt [26] 
also considered atomic dipoles in a basis consisting of four sp3 hybrids. Using a path 
integral representation, they solved the mean spherical approximation for the system 
and found an El phase. 

The above theories Stress the atomic aspect of an El phase. The dipolar phase is 
correctly termed an excitonic insulator, since excited atomic states must be mixed into 
the ground atomic state to form the dipoles. An approach more in keeping, however, 
with theories of the Mott-Wannier El phase [2-51 was developed by lhrkevich and 
Cohen [7-IO] in their study of the dielectric anomaly observed in mercury [6]. These 
authors considered the growth with density of the 6 ' S ,  - 6lP,  transition from a 
sharp atomic transition to a broad exciton band. When the bottom of the exciton 
band becomes degenerate with the normal insulating ground state (i.e. when the 
binding energy of the lowestenergy exciton becomes equal to the single-particle band 
gap), then the normal insulating phase becomes unstable to the condensation of 
Frenkel excitons. The broadening of the exciton band may be attributed in part to a 
dipolc-dipole interaction between atoms. We mention also work by lhrkevich [27], 
who ascribed the condensation of Frenkel excitons to the effects of on-site Coulomb 
interactions between electrons. 

In this papcr, wc present a detailed study of the question of the existence and na- 
ture of the Frenkel EI phase. We consider a quantum-mechanical microscopic modcl 
of a system of univalent atoms. In section 2, we introduce the model Hamiltonian, 
and explain how, in principle, this Hamiltonian may give rise to a Frenkel El phase. 
We then give a general discussion of two ways in which the model Hamiltonian may 
be analysed. 

The first, which we refer to as the pairing theoly, in its simplest form yields the 
theory of 'Ibrkevich and Cohen [7-IO]. However, although the latter does give rise to 
a Frenkel EI phase, it incorporates a number of assumptions that we feel merit a more 
detailed study. The effects of relaxing these assumptions are presented in section 3. 
Unfortunately, for technical reasons (the Bogoliubov-like transformation, see section 



Fomtalion and nalure of a dipolar Frenkel excitonic insulalor 5511 

3.2), we must specialize to a lattice-based system. This is somewhat restrictive, since 
some of the best candidates for the existence of a Frenkel EI phase occur in the liquid 
phase. The issues that we wish to address, however, are pertinent to both liquid and 
solid phases, and are most easily studied in the latter. We therefore leave to a future 
publication a consideration of the additional features arising from the spatial disorder 
inherent in the liquid phase. 

The second method of analysing the model Hamiltonian, the Hartree approxi- 
mation, is the subject of section 4. Although the Hartree approximation is, in a 
sense, less controlled than approximations employed in the pairing theory, it does 
have a number of advantages. For example, it allows an explicit characterization of 
the dipolar E1 phase, in contrast to the pairing theory, which describes the normal 
insulating phase and the transition to an EI phase, but not the El phase itself. Further, 
the Hartree approximation is applicable to liquid as well as solid phases, although 
for the sake of comparison with the results of the pairing theory, we again consider 
the lattice-based system of section 3. In fact, such a comparison shows good agrce- 
ment between the results of sections 3 and 4 and, we hope, vindicates the use of the 
Hartree approximation. Finally, in section 5, our conclusions are summarized and 
some connected issues are discussed. 

2. The model Hamiltonian 

The model system that we consider consists of a stationary configuration of N atoms, 
with one valence electron per atom. For the moment, we make no assumption as to 
whether the atoms form a lattice or are spatially disordered. The valence electrons 
are described via a tight-binding representation, and we choose as basis states sets of 
n orbitals centred on each of the N ions (or 'sites'). We assume all basis states to 
be mutually orthogonal. 

We are interested in the possible formation of a Frenkel El phase, in which the 
behaviour of the valence electrons leads to each atom acquiring a dipole moment. The 
optimum conditions for such an El phase occur in a strongly insulating regime. To this 
end, we assume that all on-site electron-elecrron Coulomb terms are sufficiently large 
that we need only consider electron configurations in which each site is associated with 
exactly one valence electron, and therefore we take each site to be strictly neutral. 
Hence, we may neglect all electronic matrix elements that result in a net transfer 
of electrons between sites. Terms that would involve net electron transfer, such as 
the one-electron transfer matrix elements, eventually lead to an insulator-to-metal 
transition, which may compete with the transition to an E1 phase. In the present 
paper, however, we do not consider such a possibility. 

With only one electron per site, we need not include any on-site electron4ectron 
terms. Further, with all sites neutral, we may neglect terms associated with charge 
that occur in a multipole expansion of the intersite Coulomb terms. We thus consider 
the following model Hamiltonian: 

In equation (21), the operator cj, (q,) creates (annihilates) an electron in the 
basis state [io) associated with level OL on site i, and the sums run over all N sites and 
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all n levels. The diagonal term, cia, is the zero-order site energy of level a on site 
i. P$ps76 consists of a series of multipole terms, the leading term of which falls off 
with the separation of two sites as (separation)-3, and an exponential exchange-like 
term. Here, we retain only the leading multipole term: 

M D Winn and D E Logan 

x (P le( r  - R , W ) .  (22) 

In equation (2.2), -e(v-Ri) is the dipole moment operator for an electron of charge 
-e at position r,  Ri is the centre-of-mass position of site i, and I is the identity 
matrix. This term clearly represents dipolar interactions between sites, and is in fact 
the second uantized representation of the dipole4pole interaction considered in 
123-261. Pij o$.r6 satisfies . 

and, if we assume the dipole moment matrix elemenn to be real, it further follows 
that 

(24) p:P.?d = p@*.?6 = p~iP.6~ = pP0.b 
SJ lj I t  ' I  ' 

I n  arriving at equation (2.1) for neutral atoms, we have neglected two classes 
of term. The first involves electron number operators on different sites, and has 
a leading term of order O( R - 5 ) ,  arising from interatomic quadrupolequadrupole 
interactions. The second involves an electron number operator on one site and 
operators for an electronic transition on a second site, and has a leading term of 
order O( E4), arising from interatomic dipolequadrupole interactions. Recall that 
terms in the Hamiltonian involving the overlap matrix of basis states on different 
sites, and terms involving the transfer of an electron between sites (all of which we 
have neglected), depend exponentially on the separation of sites. Thus, all terms that 
have been neglected in constructing the Hamiltonian given by equations (21) and 
(2.2) fall off with the intersite separation faster than O( E3),  and Hamiltonian (2.1) 
may be considered to be the asymptotically exact low-density form. 

We now specialize by considering a restricted basis set of one s orbital and three 
degenerate p orbitals per site. The p orbitals for all sites are spatially quantized along 
a common set of axes, but we make no assumptions about the orientation of these 
axes. The Hamiltonian (21) becomes 

Jf = t 
f&i, t c cipc;p,c;p,  

; io 

( 2 5 )  - 5 1 P*y+p7cllic;p. t Cip*Cir ) (Cj*CjPb  t t CjPPCj,)  t 

:# I  
or@ 

where Greek letters now refer to the polarization of a p orbital and we have used 
equation (2.4). 
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The first line of equation (2.5) gives the Hamiltonian for a collection of isolated 
four-level atoms. For an isolated atom with a single valence electron, population of 
the p levels is obviously energetically unfavourable owing to the fact that f i p  > E;$. 
In the bulk phase, however, excitation to a p level may be stabilized by the dipolar 
terms in the second line of equation (2.5), and it is this feature that is responsible for 
the possible formation of an El phase. The magnitude of the dipolar matrix elements 
in the second line of equation (25) increases with decreasing intersite separation, i.e. 
with increasing density. Therefore, we expect a transition to an El phase, if it does 
occur, to occur as the density is increased. We must bear in mind, however, that it 
is possible that the density at which the transition is predicted to occur is outside the 
range of validity of the low-density form of the Hamiltonian that we have used. One 
simple way to correct for deviations from the low-density form of the Hamiltonian 
is to replace the dipolar form of equation (2.2) by a more general form, taken, for 
example, from detailed spectroscopic calculations [lo]. 

Before discussing practical methods for analysing the behaviour of Hamilto- 
nian (2.5), we make some general comments. The total N-electron wavefunction 
of the system (for the ground state or any excited state) may bc expanded in terms 
of the basis set of all allowed electronic configurations of the N electrons. One may 
classify possible electronic configurations according to the number of excited sites, i.e. 
the number of sites for which the valence electron is in a p-level state. In this context, 
there are two distinct types of term in the second line of equation (2.5). First, there 
are those which excite an electron on site i from the s level to a p level and relax 
an electron on site j from a p level to the s level, or vice versa, and thus preserve 
the total number of excited sites. Secondly, there are double-ercilation terms, which 
either excite electrons on both sites i and j or relax eleccmns on both sites i and j, 
and thus change the total number of excited sites by two. It follows that, in ordinary 
circumstances, the total N-electron wavefunction of the system consists either solely 
of electronic configurations with even numbers of excited sites or solely configurations 
with odd numbers of excited sites. In particular, the normal ground state (Le. in the 
absence of an E1 phase) consists not only of the configuration with no excited sites, 
but also configurations with two, four, . . . excited sites. 

There are two important points associated with this observation. First, mixing 
with doubly, quadruply, . . . excited configurations means that the ground-state energy 
decreases as the density of the system increases; this is the origin of the van der Waals 
binding ene ra  (see section 3.2). Secondly, since the site dipole moment operator 
connects configurations differing solely by one in the number of excited sites, none 
of the wavefunctions described above possesses dipolar sites. 

In fact, a dipolar ground state is attainable within this picture. If an excited state 
consisting of odd configurations becomes degenerate with the ground state, which 
itself consists of even configurations, then only an infinitesimal perturbation (such as 
an arbitrarily weak electric field) is required to mix these states. The ground state 
then distorts so that it is a mixture of even and odd configurations, and thus possesses 
dipolar sites. In other words, a transition to a dipolar ground state (the El phase) 
is deemed to occur when an excited state consisting of odd configurations becomes 
degenerate with the ground state. This b the criterion for the transition to a dipolar 
Frenkel EI phase that we use in section 3. 

We now describe two approaches to the analysis of Hamiltonian (2.5). The first, 
and most common, method (which we shall refer to as the pairing theory) is to group 
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the electron (Fermi) operators into pairs, defining 
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(2.6) bi, = C ~ ~ C ; , ,  b;, t - t  - cip,cis. 

With these definitions, and defining the zero of energy to be such that all electrons 
are in s levels (x i  cis = 0), equation (2.5) reduces to 

where Ac; = cip - cis. The operators bt, /b;,  obey neither Fermi-Dirac nor Bose- 
Einstein statistics (see section 3.3), except in the limit of a vanishing concentration of 
excitations whence the commutation relations reduce to those applicable to bosons. 

To bring Hamiltonian (2.7) into a tractable form, three approximations are gener- 
ally made. First, the cross-terms in the Off-diagonal part of the Hamiltonian, for which 
01 # 0, are neglected. Secondly, the doubleexcitation terms in the off-diagonal part 
of the Hamiltonian are also neglected. Finally, the operators b: , /bi ,  are generally 
assumed to obey Bose-Einstein statistics. With these approximations, the Hamilto- 
nian (2.7) separates into three single-band tight-binding Hamiltonians: 

Hamiltonians of this simple form have been the basis of much work on excitons, 
from the early work of Heller and Marcus [28] through to the more recent work of 
lbrkevich and &hen [7-lo]. (We should also add that a term describing so-called 
dynamic intermlion between excitons is often added to the above Hamiltonian. If this 
term is attractive, then it may lead to the formation of biexcitons, polyexcitons or a 
liquid of excitons [29-311. We do not consider such interactions in the present work.) 

The Hamiltonian (28) is sulficient to predict a transition to an El phase, but 
the question arises: To what extent are the approximations leading to equation (2.8) 
valid, in this context? The neglected cross-rems connect excitations of one polariza- 
tion with those of a different polarization. It is straightforward to show (see section 
3.1) that for the El phase of primitive cubic lattices, at least, this interaction between 
different polarizations does indeed vanish (assuming boson statistics). The cross- 
terms may, however, be important for other lattices and disordered systems. The 
neglected double-excitation terms are associated with the same matrix element as the 
off-diagonal terms that are retained. They can, though, be neglected at very low den- 
sities, since they connect states separated in energy by Aci + Acj, in contrast to the 
retained terms, which connect states separated in energy by Ac; - Acj. As explained 
above, however, the  transition to an E1 phase occurs at a higher d-nsity such that 
banding leads to states with different numbers of excited sites becoming degenerate. 
The doubleexcitation terms, which connect states differing by two in the number of 
excited sites, must surely then be important. Lastly, the assumption of Bose-Einstein 
statistics is valid only for a vanishingly small concentration of excitations. Since the 
ground state of an El phase must consist of a macroscopic concentration of excitations, 
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the assumption of boson statistics is certainly not valid within this phase, and may 
or may not be valid in the normal non-dipolar phase as the transition is approached. 
Thus, these approximations would seem worthy of further investigation. In section 3, 
we consider the neglect of the double-excitation terms and the assumption of boson 
statistics in more detail. 

The alternative method of analysing Hamiltonian (25) is to perform a Hartree 
decoupling on the terms quartic in the electronic operators. (In fact, since the model 
Hamiltonian contains no exchange terms, this may also be considered a Hartree-Fock 
decoupling.) One thus makes the following type of approximation: 

(29) cisCip.CJscjpb t N cfaCip.(CfsCjp.e) + (c Isc ip , )c~scjps - (C!sCip,)(Cf:,Cjp.e) 

where (. . .) denotes a quantum-mechanical average over the trial Hartree wavefuno 
tion. With this approximation, and using equation (2.3), equation (2.5) reduces to 

We have again defined the zero of energy to be such that all electrons are in s levels. 
The last term of equation (2.10) contributes to the total energy, but not to the 

quantum mechanics, of the system. The remaining (quantum-mechanical) terms de- 
scribe an effective oneelectron problem, which is straightfonvard to solve. In fact, 
equation (2.10) clearly separates into N atomic Hamiltonians, with matrix elemens 
for a particular site depending on the expectation values of operators on all other 
sites. Thus, what is required is a self-consistent solution of a four-level atomic Hamil- 
tonian. This solution is presented in section 4. 

The Hartree approximation is the simplest way of analysing the model Hamilto- 
nian; and further, in contrast to the pairing theory, it provides information on the 
dipolar state itself. It is not, however, obvious a priori how reliable the Hartree 
approximation (2.9) may be expected to be. In section 4, we solve the Hartree equa- 
tions for an infinite system, and find good agreement with many of the results of the 
pairing theory given in section 3. As a counter-example, in section 5 we show that 
the Hartree equations would also predict an El phase in a two-site system, for which 
an exact analysis shows that there is no such phase. 

3. hir ing theory 

We now study in detail the version of the model Hamiltonian given in equation (27). 
In this approach, the Hamiltonian is expressed in terms of the operators &lo/6;a, 
which are defined, via equation (2.6), in terms of pairs of electron operators. As 
discussed in the previous section, the aim is to assess the validity of two of the three 
approximations used in deriving the simpler Hamiltonian (2.8), viz. the neglect of 
the doubleexcitation terms and the assumption of Bose-Einstein statistics. Particular 
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attention will be paid to the implications for the predicted existence and nature of 
a Frenkel EJ phase. TO this end, it is expedient to select a very simple example: an 
infinite Bravais lattice with Aei = A6 for all i. 

Retaining the approximation (upon which we comment further below) of neglect- 
ing the cross-terms in the second term on the right-hand side of equation (2.7), for 
which a # p, we thus study the Hamiltonian 

M D Winn and D E Logan 

where the sums are over all N (N - CO) sites on the lattice. The Hamiltonian (3.1) 
includes the doubleexcitation terms; and the operators do not, in general, obey boson 
statistics. It is the effects of these two factors that we wish to investigate, but first, for 
the sake of comparison, we consider the simpler case in which the doubleexcitation 
terms are neglected and the operators are assumed to obey boson statistics. 

3.1. No double-mitalion (emu, boson stathiics 

Neglecting double-excitation terms, equation (3.1) reduces to 

and the operators bfo/bio are now assumed to obey boson statistics, a fact that we 
have used in simplifying the second term on the right-hand side. Equation (3.2) 
is identical to equation (2.8) for the special case of an infinite Bravais lattice with 
constant A€,. 

The Hamiltonian (3.2) is diagonalized by introducing the operator b,, and its 
Hermitian conjugate bt, ,  defined via 

where the sum is over the first Brillouin zone. It is straightforward to show that the 
transformation to the operators, b,,, is canonical, so that the commutation properties 
of the original operators (in this case of Bose-Einstein form) are preserved. With 
the substitutions (3.3), equation (3.2) reduces to 

(3.4) 

Here, p is the number density of lattice sites, M = (isle(? - Ri)olip,) (for any a) 
is the transition dipole moment, and 
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where the sum in equation (3.5) is over all non-zero separations between lattice sites. 
We define the vacuum state of the system, IO), to be such that b,,lO) = 0 and 

(OlO) = 1; hence, it is the state for which all electrons occupy s levels. Relative to 
this vacuum state, the Hamiltonian (3.4) possesses the  single-exciton eigenstates 

a, 10) 

with eigenenergies 

(3.7) 

E,, = Ac - p M 2 D m e ( k ) .  (3.8) 

The many-exciton state 

b,,b,,,, t t  . . . (0) (3.9) 

is also an eigenstate of the system, and has an energy 

E&, + E,,,, + ' '  ' .  (3.10) 

This is the traditional solution to the Frenkel exciton problem [28, 321. Equa- 
tion (3.8) describes the energies of a band of single-exciton states. These energies 
depend on the lattice sums given in equation ( 3 4 ,  and the sums may be evaluated by 
noting that Dam(k) is precisely the quantity 'D"(k)' defined by Cohen and Keffer 
in equation (16) of 1331. Cohen and Keffer 1331 describe the properties of these sums 
for simple cubic (sc), face-centred cubic (FCC) and body-centred cubic (BCC) lattices, 
and give tables from which D""(k) may be calculated for a selection of points in the 
first Brillouin zone. The single-exciton states occupy an energy band that broadens 
linearly with density, as indicated in equation (3.8). This band is well behaved except 
near k = 0,  where D""(k) is only piecewise continuous, splitting into transverse and 
longitudinal branches. (Note that, for a large but finite lattice, the above behaviour 
is modified in a small region about k = 0 1331.) 

The behaviour of the many-exciton system follows straightfonvardly, and is shown 
schematically in figure 1. At sulficiently low densities, the ground state is the zero- 
exciton vacuum state, which has a constant energy of zero. Above this, there is a 
band of single-exciton states with energies given by equation (3.8), and at higher 
energies there are bands associated with two, three, . . . excitons. Because we have 
neglected the double-excitation terms in the Hamiltonian, the number of excited sites 
is a good quantum number and a band of n-exciton states is associated with electronic 
configurations containing n excited sites. 

As the density is increased, the single- and many-exciton bands broaden and 
the energy gap between these excited states and the ground state decreases. At a 
critical density, p,, such that E,, = 0 for the lowest-energy single-exciton state, 
the lower edges of the single-exciton band and all the many-exciton hands become 
simultaneously degenerate with the ground state. At this point, there is mixing 
between the ground state and the single- and many-exciton states leading to a dipolar 
state, as described in section 2 Since there is mixing with all many-exciton bands, 
one would expect the condensation of a macroscopic number of excitons. Within this 
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Figure 1. A schematic illustration of the exciton bands derived from equations 
(3.8) and (3.10) as a function of density, for the case where double-excitation terms 
in the Hamiltonian are neglected and boson statistics assumed. The bands are labelled 
according to the number of excitons, or equivalently the number of excited sites, con- 
tributing to the manyexcilan s t a t ~ ~ .  At the critical density, p c ,  the lower edges of all 
mexcilon bands (m > 1) become simultaneously degenerate with the ground stale. and 
for densities p > pc  there is  a dipolar Frenkel EI phase. 

Figure 2. A schematic illustration of the renormalized exciton bands derived from 
equations (3.20) and (3.22) as a function of density, for the case where double-excitation 
terms in the Hamiltonian are retained and boson statistics assumed. The bands are 
labelled according to the number of renormalized excitons contributing to the many- 
renormalized-uciton states. Note that the expectation value of the number of excited 
sites is macmcopically large for a11 states. At the critical density, p E ,  the lower edges 
of a l l  m-renormalized exciton bands (m > 1) become simultaneoudy degenerate with 
the ground state, and for densities p > pc lhcre is a dipolar Frenkel EI phase. The 
verlical line at the density 2 p ,  indicates where the transition to a dipolar Fmnkel EI 
phase would occur i f  the doublc-ucitalion terms in the Hamiltonian were neglected. 
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model Hamiltonian, we would thus anticipate a first-order transition to an El phase 
when A€ - p M 2 D o o ( k )  first becomes zero for some value of k, i.e. 

(3.11) 

where k is that appropriate to the lowest-energy exciton. 
For FCC and BCC lattices, the state associated with the lower edge of the single- 

exciton band, and consequently with the lower edges of all many-exciton bands, is 
the transverse k = 0 exciton. There is thus a transition to a dipolar state when 
the transverse k = 0 exciton becomes degenerate with the ground state. Assuming 
that the dipolar state reflects the translational symmetry of the k = 0 exciton, one 
therefore expects the dipolar state to be ferroelectric. In contrast, if one follows 
a similar argument for a simple cubic lattice, then one predicts an antiferroelectric 
dipolar state in which the dipoles are ferroelectrically aligned parallel to the axis of 
polarization, but antiferrffilectrically aligned perpendicular to the axis of polarization. 

The cross-terms that were neglected in deriving equation (3.1) lead to terms in 
D"P(k) (a # p), defined by analogy with equation (3.5). If, for a cubic lattice, we 
choose the orientation of the p orbitals to be such that we may realize a transverse 
k = 0 exciton, then the quantities D"B(0) vanish 132,331. Thus, we would expect the 
neglected cross-terms to have no effect for cubic lattices that exhibit a ferroelectric El 
phase, i.e. the FCC and BcC lattices. The cross-terms also vanish for the wavevector 
associated with the transition to an El phase in a simple cubic lattice 1331. Thus, 
although the cross-terms are in general non-zero, for the three primitive cubic lattices 
the cross-terms should not affect the transition to the E1 phase. 

The scenario leading to equation (3.11) is essentially that considered by nrkevich 
and Cohen [7-IO] in their investigation of the possible Frenkel EI phase in expanded 
fluid mercury. Replacing the quantities Pz?p-'spo by matrix elements taken from 
spectroscopic calculations, they predicted [ lo j a  transition to an E1 phase at a density 
close to the observed dielectric anomaly [6]. 

3.2. Double-excitation terms, boson sfatistics 

We next consider the effect of reintroducing the double-excitation terms. We therefore 
return to equation (3.1) but, for the moment, retain the approximation of assuming 
boson statistics for the operators bf,/b,,. Performing the canonical transformation 
(3.3). and using equations (3.6), we find 

H = x [ A e -  
ko 

(3.12) 

In addition to the terms occurring in Hamiltonian (3.4), equation (3.12) includes off- 
diagonal elements connecting exciton states of wavevector k with states of wavevector 
-k. Such a situation is reminiscent of the B c s  (Bardeen-Cooper-Schricffer) Hamil- 
tonian of superconductivity theory, which is diagonalized via the so-called Bogoliubov 
transformation. Here, we employ a related canonical transformation 1341, which dif- 
fers slightly from the Bogoliubov transformation in order to take into amount the 
boson nature of the operators. 



5520 M D Winn and D E Logan 

We define new operators, Bko and Bi,, via 

b,, = (cosh Ok,)B,, - (sinh Bko)B!ko 

b!, = (coshO,,)B!, -(sinhOko)B-,, 
(3.13) 

with 

= = (3.14) 

where Oka is a parameter that we are free to choose. With these definitions, and 
using equations (3.6) and (3.14) together with the boson properties of the operators 
to simplify the resulting expression, equation (3.12) reduces to 

X =  x [ { [ A r  - pM?DQa(k)]  cosh(2Uka) + p M 2 D D a e ( k )  sinh(U,,)} B!,Bk, 

- I 3 {[A€ - pM2D~~(k)]sii i l i(2U,,)  + p M 2 D o o ( k )  cosh(20k, ) )  

ke  

X (BL,B!k, 4- BkeB-ka) 4- ~ { [ A € - p M ? D " , ( k ) ] C o S h ( 2 O k , )  

$pM2Da,(k)sinh(zek,) - A<)]. (3.15) 

The coelhcient of the double-excitation terms in equation (3.15) is made zero by 
choosing the parameter O,, such that 

It follows from cquation (3.16) that 

With these substitutions, the remaining terms of equation (3.15) yield 

H = C { [ A r  - p M 2 D U a ( k ) j 2  - [PM'D"~(~)]?}~/~(B!,E~, + 4) - SNAr. 
k a  

(3.18) 

We redefine the vacuum state of the system, IO), to be such that Bk,lO) = 0 
and (010) = 1. Relative to this vacuum state, the Hamiltonian (3.18) possesses the 
single-particle eigenstates 

B!, 10) (3.19) 
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with eigenenergies 

Rkor = {[Ac - p M 2 D o P ( k ) 1 2  - [ p M Z D 0 0 ( k ) ] 2 ) 1 / 2 .  (3.20) 

To distinguish these states from the exciton states defined by equation (3.7), we use 
the name renormalized actonS. The many-renormalized-exciton state 

E!, B!,,, . . .IO) (3.21) 

is also an eigenstate of the system, and has an energy 
- - 

EL, + EL,,, + '. . (3.22) 

Although the number of renormalized excitons is a good quantum number, the 
number of bare excitons (or equivalently the number of excited sites) is no longer a 
good quantum number. This is obvious from the presence of the doubleexcitation 
terms, which do not conserve the number of excited sites, and follows formally from 
the fact that the opcrator for the number of excitons, bL,b,,, does not commute 
with the  Hamiltonian (3.18). 

We may, however, calculate the expectation value of the number of excitons, or 
equivalently the expectation value of the number of excited sites. For example, the 
expectation value of the number of excitons per site in the vacuum state, IO), is given 
bY 

(3.23) 

In deriving the third equality of equation (3.23) we have used the fact that E,, 
destroys the vacuum state, and in deriving the last linc we have used equation (3.17). 
Thus, the number of excitons or excited sites in the vacuum state increases from 
zero as the density increases. For a system with a finite number of sites and periodic 
boundary conditions, (n),b,3. clearly diverges as p - A c / 2 M 2 D D " o r ( k )  for the partio 
ular wavevector corresponding to the largest D"(k) (which, as we shall see below, 
is the density pc of the transition to an EI phase). For an infinite system, however, 
this divergence is intcgrable and (?x):;; remains finite. For example, (n)@ = 0.086 
for an FCC lattice at the transition density. Since we have calculated the number of 
excitons per site, it is clear that for densities 0 < p < p, the vacuum state possesses 
a macroscopic number of excited sites. 

At sufficiently low densities, the vacuum State is the ground state of the system. 
From equation (3.18), the ground-state ene ra  per site is then 

Ebos - - * ~ [ { [ A C -  p M 2 D o 1 0 ( k ) ] 2 -  [ p M ' D ~ o r ( k ) ] ' } ' / 2 - A ~ ~ .  (3.24) (0) - 2N 
kor 



In the limit of zero density, the ground-state energy is clearly zero, as required; but 
at finite density, the ground-state energy is negative and decreases with increasing 
density. This energy is clearly an extensive property, and may be associated with the 
van der Waals stabilization energy of a molecular system 1351. The stabilization is 
a consequence of the double-excitation terms, which mix into the zero-exciton state 
(which has all electrons in an s state) states with two, four, . , . excitations. In fact, 
the ground state is associated with an extensive number of excited sites, as may be 
seen from equation (3.23). 

Directly above the ground state lies a band of single-renormalized-exciton states, 
with energies above that of the ground state given by equation (3.20). The energy of a 
renormalized exciton of wavevector b and polarization a is clearly different from that 
of the corresponding simple exciton, but nevertheless the renormalized exciton states 
are ordered in energy in the same way as the exciton states described in the previous 
section; i.e. if the bottom of an exciton band is associated with a transverse It = 0 
state, then so is the bottom of the renormalized exciton band. At higher energies, 
there are further bands associated with two, three, . . . renormalized excitons (see 
figure 2). 

At very low densities, the above picture reduces to that described in section 3.1. 
This may be seen as follows. Expanding the square root in equation (3.20) to linear 
order in p, equation (3.20) reduces to equation (3.8). Further, to linear order in p, 
the ground-state energy given by equation (3.24) is zero, and the operator E,, is 
identical to the  operator bha. Thus, the first deviation from the simple picture of 
section 3.1 arises from terms of order O ( p 2 ) .  Such high-order correction terms may 
not be necessary for spectroscopic applications. but are certainly important for the 
density regime in which an El transition occurs. 

A transition to an El state occurs in the Same way as for the simpler model of 
section 3.1. As the density is increased, the single- and many-renormalhed exciton 
bands broaden (see figure 2), giving a first-order transition to an E1 phase when the 
lower edges of these bands become simultaneously degenerate with the ground state. 
The critical density, pc, for the transition is the density at which Eka, as given by 
equation (3.20), is first zero for some value of b i.e. 

(3.25) 

where It is that appropriate to the lowestenergy renormalized exciton. Comparison 
with equation (3.11) shows thot addition of rhe double-eucitation temis halves the den.@ 
predicledfor the transition. Since the renormalized exciton states are ordered in energy 
in the same way as the bare exciton states, the ferroelectric or antiferroelectric nature 
of the dipolar El phase is the same as that predicted by the analysis of section 3.1. 

Finally, we reiterate that for densities 0 i p < pc, the ground state, although 
non-dipolar, does contain a non-zero fraction of excited sites (of the order of lo%, see 
discussion following equation (323)). Thus, any analysis that measures the number 
of excited sites would show a slow increase in this quantity for densities 0 < p <: po 
followed by a discontinuous rise at p = pc. As will become more apparent when we 
consider non-boson statistics, it is the site dipole moment, rather than the number of 
excited sites, that is the appropriate order parameter for this transition. 

3.3. No double-ercitation rems, correcr statisticr 
We now return to the simpler Hamiltonian considered in section 3.1, and relax the 
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assumption of boson .statistics. From the fermion nature of the electron operators, 
it is straightforward to show that the operators defined by equation (2.6) obey the 
following commutation relations: 

[ b .  b .  J5 ] = (bf , ,bJp]  = 0 (3.26) 

These operators clearly do not, in general, obey boson statistics, as was assumed in 
the preceding sections. If one restricts the model to only one polarization cy (as is 
usually done, see e.g. (28, 36]), then the operators in fact obey Pauli statistics, i.e. 
operators referring to the same site satisfy fermion anticommutation relations while 
operators referring to different sites satisfy boson commutation relations. The above 
relations do, however, reduce to those appropriate to bosons when the operators act 
on a state of zero exciton density-in that case, cr,c,, yields one and c!psc,pa yields 
zero for all sites. The boson approximation is thus expected to be reasonable for 
small densities of excitons. 

The boson approximation does, however, break down for high densities of ex- 
citons, such as those produced by powerful lasers 137, 381. In the present context, 
an El phase is associated with a macroscopic number of excitons and so corrections 
to a boson description may well be important in the approach to such a phase. It 
is, therefore, of interest to take into account the correct statistics of the operators 
61e/6%e. One method of tackling this problem is to transform to a set of operators 
that rigorously obey Bose-Einstein statistics. Such a transformation was propased by 
Agranovich and ?bSX (291 (see also [39, do]), who related the exciton operator to an 
infinite series of boson operators. Retaining only the first term in this series, one 
recoven the boson approximation of section 3.1. If one further includes the second 
term, then a transformation of Anderson [34] (see also [41]) is rccovered. Both the 
transformation due to Agranovich and mSiC (291 and that due  to Anderson [34] lead 
to additional terms in the Hamiltonian that describe the so-called kinentotic infer- 
action between the bosons. Physically, these t e r m  account for scattering processes 
between excitons which arise because a site, which may contribute to two or more 
exciton states, can only be singly excited. 

In the present paper, however, we follow Kaplan (361 and do not make such a 
transformation; instead we deal directly with the non-boson operators, 6ia It 
follows from the commutation relations given in equations (3.26) and (3.27) that the 
exciton operators, defined via equation (3.3), obey the relations 

bw@]  = [ b f ,  I bkppl = 0 (3.28) 

(3.29) 

Note that the transformation (3.3) is not canonical, as it was when boson statistics 
were assumed for the operators b!* /b ia ,  since the commutation relation (3.29) differs 
from the relation (3.27). 

Neglecting doubleexcitation terms, the Hamiltonian of interest is given by equa- 
tion (3.2), where the operators b!,/b, ,  now obey the commutation relations (3.26) 
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and (3.27). PerCorming the transformation (3.3). and taking into account the second 
relation of equation (3.6). the Hamiltonian again reduces to equation (3.4). It must 
be stressed, however, that with the statistics implied by equations (3.28) and (3.29). 
bi,b,, is not the number operator for the number of excitons of wavevector k and 
polarization (I 136). 

T h b g  the vacuum state, IO), to be as defined in section 3.1 (i.e. such that 
it is destroyed by bka), we see immediately that it is again of constant and zero 
energy. Consider next the Hamiltonian (3.4) acting on the single-exciton state given 
by equation (3.7). Using equation (3.29) and the fact that b,, destroys the vacuum 
state, we have 
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where we have also used the fact that c ~ ~ c ~ ~ ~ O )  = 10) and C { ~ . C ; ~ ~ ~ O )  = 0 for all 
sites (recall that we have neglected the double-excitation terms in the Hamiltonian). 
Thus, the one-exciton state (3.7) is again an eigenfunction of the Hamiltonian, with 
eigenvalue given by equation (3.8). Accounting for non-boson statistics, therefore, 
has no effect for states with zero or one exciton, as is obviously correct. 

Non-boson statistics are, however, relevant for the many-exciton states defined by 
equation (3.9). Using the commutation relation (3.29) and noting the properties of 
the vacuum state, it is straightfonvard to show that the Hamiltonian (3.4) acting on 
a two-exciton state yields 

where E,, is the appropriate one-exciton energy given by equation (3.8). The two- 
exciton state, bi,bL,plO), is clearly not an eigenstate of the Hamiltonian. We may, 
however, calculate the expectation value of the  energy in this state, and this is found 
to be 

E k e  k'p - = (o lbk ,@bko b!,b:,,lo)/(olbklRbku b!xxb!dplO) 

x ( Eka + E,,B - 2Ae). (3.32) 

We see that there is a correction of order O ( l / N )  to the boson result, E,,,,, = 
Eke + E,,,, and that this correction is largest for states near to the band edges and 
of a sign such that the two-exciton band is narrowed. In other words, there is an 
attractive kinematic interaction for high-energy excitons, and a repulsive kinematic 
interaction for low-energy excitons. 
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The results become progressively more complicated as one considers more exci- 
tons. Let us therefore consider the special case of n excitons with the same wavevector 
and polarization, i.e. the n-exciton state 

(3.33) 

The behaviour of such states is likely to be relevant to the bandwidth of a many- 
exciton band, s i n e  some (though not all) states at the band edge are of this form. 
The expectation energy of the state (3.33) can be shown to be [36] 

(3.34) 

The correction to the boson result is now of the order O ( n / N ) .  This strongly 
suggests that an n-exciton band is narrowed by a factor of the order O ( n / N ) .  In 
the limit N 3 00, the narrowing is non-negligible if there is a macroscopic number 
of excitons. 

We now comment on the implications of the above for thc transition to an El 
phase. As discussed in section 3.1, the transition occurs when the lower edge of 
the band of one-exciton states becomes degenerate with the ground state. Since the 
behaviour of one-exciton states is independent of the many-particle statistics assumed, 
the critical density at which the transition occurs is again given by equation (3.11). 

The nature of the transition is, however, likely to be altered. Recall from section 
3.1 that, when boson statistics are assumed, the bottom of all many-exciton bands also 
become simultaneously degenerate with the ground state at the transition, leading to 
the condensation of a macroscopic number of excitons. Whcn the correct statistics 
are used, however, the many-exciton bands are narrowed, such that the lower edge of 
an la-exciton band is raised in energy by an amount of the order of O ( n / N ) .  In the 
thermodynamic limit, therefore, the exciton bands shown in figure 1 are unaffected, 
but those bands consisting of a macroscopic number of excitons, which for clarity are 
not shown in figure 1, are narrowed. Thus, as the density is increased through pe, one 
might expect instead a continuous increase in the number of excitons in the ground 
state, in contrast to the abrupt condensation of a macroscopic number of excitons 
suggested in section 3.1. That is, the presence of a kinematic interaction between 
excitons seems likely to drive the transition second order. 

3.4. Double-excitation terms, correct statisrics 

So far, we have considered separately the effects of double-excitation terms and non- 
boson statistics on the results of the simple model studied in section 3.1. We now 
examine their combined effect, and thus study the full model Hamiltonian given by 
equation (3.1). 

As in section 3.2, we remove the doubleexcitation terms via the transforma- 
tion (3.13), and consequently we need to know the commutation properties of the 
operators Bka. From the definition of the operators B,,, it follows that the com- 
mutation properties may be related to those of the operators bka by 

[BE*. B,,p] = cosh eke sinh Okfg [bke ,  b!,,,J - sinh e,, cosh Ok,p [ b k f g ,  b t k , ]  
(3.35) 
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[ B i n ,  B:,& = sinh e,, cosh OktP  [ b - L o ,  bL,& - cosh eho sinh 0,zp [ b - k , 0 ,  b:,] 
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(3.36) 

[ B b p ,  = cosh e,, cosh O k , p  [bbor  b:,@] - Sin11 o,, sinh ok,p [b_,tp,b!.k,] 
(3.37) 

where we have used equation (3.28) to eliminate two terms in each expression We 
will find the following special case of equation (3.37) useful: 

where we have used equation (3.29). Note that the transformation (3.13) is not 
canonical when the correct statistics are taken into account. 

Beginning from the Hamiltonian (3.1), and using the transformations 
(3.3) and (3.13), one finds the following form for the Hamiltonian: 

+ lJ{[Ae - piW'Dna(k)]' - [ p M 2 D n " ( k ) ] 2 ] 1 ' 2  - A c ~ B , ~ B L ~ } .  
(3.39) 

In deriving equation (3.39). we have used equations (3.6), (3.14), (3.16) and (3.17), 
but have made no assumptions about the commutation properties o l  the operators. 
If one assumes Bose-Einstein statistics, then equation (3.18) is recovered. 

Consider the vacuum state defined in section 3.2, and the single- and many- 
renormalized-exciton states defined in equations (3.19) and (3.21). As discussed in 
section 3.2, the presence of the double-excitation terms means that,  even for densities 
p < pe. there is a macroscopic number of bare excitons in each of these states, 
including the vacuum state. Thus, in contrast to the situation described in section 3.3, 
the assumption of Bose-Einstein statistics does not hold in any of these states. In 
fact, neither the vacuum state, the single-renormalized-exciton states, nor the many- 
renormalized-exciton states are eigenstates of the Hamiltonian (3.39). As in section 
3.3, we must evaluate the expectation energies of these states. 

First, however, we calculate the expectation value of the number of bare excitons, 
or equivalently the expectation value of thc number of excited sites, per site in the 
vacuum state, IO): 

(3.40) 

where we have used the fact that B-ka destroys the vacuum state to replace 
B-,,B!lro by the commutator. Now, from equation (3.39, the commutator is 
independent of k. The right-hand side of equation (3.40) thus depends on the sum 
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Cks inh2Qk,  and, since this is clearly independent of a, we may rewrite equa- 
tion (3.40): 

(3.41) 

Finally, rearranging we find 

where (n):? is given by equation (3.23). 
We see that (n)(a, lies in the range 0 4 ( ? I ) ( ~ ,  < 3 / 4 ,  the upper limit occurring 

when the s orbital and the three p orbitals of each site contribute equally to the 
vacuum state. This is in contrast to the corresponding result in the  boson approxima- 
tion, for which (n);;;, given by equation (3.23), is not in principle bounded above. 
The former result is clearly the physically correct one. More generally, the effect of 
including the correct many-particle statistics is always to lower somewhat the expec- 
tation value of the number of excited sites in the vacuum state. For an FCC lattice at 
the transition density, for example, = 0.077, in contrast to the result given in 
section 3.2, (n)$ = 0.086. 

Using the fact that B,, destroys the ground state, the ground state energy per 
site is given by 

and using equation (3.38) this reduces to 

E(0) = E& (1 - . m c o , ,  (3.44) 

where E,!aT is given by equation (3.24) and (?z)(~, by equation (3.42). Remembering 
that E$ is negative, we see that the energy of the ground state is greater than the 
boson result by a factor related to the expectation value of the number of excited 
sites in the ground state. 

We have not been able to find a simple form for the expectation energies of the 
excited states. However, it would seem reasonable to suppose that an excited state, 
v, is raised in energy by an amount related to the expectation value of the number of 
excited sites in that state, (n)(,,. By analogy with the findings of section 3.3, we may 
also suppose that bands of many renormalized excitons, as well as being increased 
in energy as a whole, are narrowed. The critical density for a transition to an El 
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phase is determined by the energy gap between the ground state and the bottom of 
the first excited band. The correction to the boson result (equation (3.253) is thus 
expected to be of the order of the difference between (n)(o) and ( 7 ~ ) ( ~ ) ,  which we may 
suppose to be small at all densities. If this is true, then thc critical density is again 
given by equation (3.25). If, as we have suggested, higher many-renormalized-exciton 
bands are both increased in energy and narrowed, relative to lower bands, then the 
transition is likely to be driven second order, as suggested in section 3.3. 

We thus arrive at the following picture for the transition to a Frenkel El phase of 
the model system. For densities p < pc, the ground state of the system is the vacuum 
state defined in section 3.2. This state is non-dipolar but does contain a non-zero 
fraction of excited sites (of the order of 10% at p = pJ. At the density p = p, given 
by equation (3.25), which is half that predicted in the absence of doubleexcitation 
terms, each site acquires a non-zero dipole moment, and there is a transition to a 
dipolar Frenkel EI phase. Incorporation of non-boson statistics is expected to drive 
the transition second order, so that the site dipole moment increases continuously 
from zero at the transition. The expectation value of the number of excited sites in 
the ground state is also likely to increase sharply but continuously at the transition. 
Hence, it is the site dipole moment, and not the expectation value of the number 
of excited sites in the ground state, that is the appropriate order paramcter for the 
transition. The procedures described so far, however, cannot address explicitly the 
evolution of this order parameter through the transition. 
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4. IIartree npproximntion 

We now turn to the Hartree approximation to the model Hamiltonian, given by 
equation (2.10), which, as we shall see, also predicts a transition to a Frenkel El 
phase as the density of the system is increased. Within the Hartree approximation, 
one can address the approach to the transition and predict the critical density at 
which the transition occurs, and these results will be compared with the predictions 
of the pairing theoly. Furthermore, and in contrast to the pairing theory, one can also 
describe the dipolar phase, and thus describe the evolution of the order parameter, 
the site dipole moment, through the transition. Tb facilitate comparison with the 
results of the pairing theory, we again consider the simple example introduced in the 
previous section: an infinite Bravais lattice with Aci = Ac for all i. 

It is first convenient to recast the Hamiltonian (2.10) in terms of the expectation 
value of the site dipole moment, whence the problem takes the form of a self- 
consistent calculation of the  dipole moment. For the system of neutral one-electron 
sites that we are considering, the operator for the dipole moment on site i is given 
bY 

where 

M ,  = (isle(r - Ei)(ip,) (4.2) 

is a vector (assumed real) whose only non-zero component is the 4 component, which 
takes the value M. Thus, the expectation value of the dipole moment on site i is 
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given by 

CL; = - %((.f,Cip.) + (c!pa Cis)) (4.3) 
OI 

where (. . .) denotes an expectation value in the state of interest. Using equation (4.3), 
the Hamiltonian (2.10) may be rewritten in the physically appealing form 

(4.4) 

where 

is the dipole-dipole interaction tensor and 

Ei = T.. . p .  
$1 J ‘ 

j (#i)  

The right-hand side of equation (4.4) consists of a sum of N atomic Hamiltonians, 
plus a classical term that contributes to the total energy, but not to the quantum 
mechanics, of the system. Each atomic Hamiltonian is of a form corresponding to 
an isolated four-level atom in an electric field, Ei. The atoms are not, of course, 
independent, since the electric field, E,, experienced by an atom i arises from dipolar 
fields due to putative dipoles on all atoms j # i (see equation (4.6)), and thus 
depends on the expectation value of the dipole moment on all other atoms. The 
diagonalization of Hamiltonian (4.4) is, in fact, a matter of self-consistency since 
the expectation value of the dipole on any atom both helps to determine and is 
determined by the dipoles on all other atoms. 

One sees from equation (4.6) that, because T i j  is not diagonal, a dipole moment 
in, say, the z direction may contribute to the z component of the electric field felt 
at site i. In other words, the different polarizations of the atomic dipoles are, in 
general, closely intertwined. The problem is simplified if we neglect the effects of 
the off-diagonal elements of Ti, .  In fact, this approximation is directly equivalent to 
that used in the pairing theory, of neglecting the cross-terms in the second term on 
the right-hand side of equation (2.7). As discussed in sections 2 and 3.1, this does 
not affect the transition to an E1 phase in primitive cubic lattices. It would therefore 
seem a reasonable approximation to neglect the off-diagonal elements of Tjj, and we 
do so here. 

Solution of the problem posed by Hamiltonian (4.4) amounts to a self-consistent 
determination of the expectation dipole moments of all N sites. If there exists 
more than one self-consistent solution, then the ground-state configuration of dipole 
moments corresponds to that with the lowest energy. One configuration that is 
always possible is, of course, that with zero dipole moment on all sites, but this is not 
necessarily the lowest-energy solution, as we show below. 
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The simplest way to proceed is to allow for the possibility of a ferroelectric state, 
with the dipole moment of equal magnitude and orientation on all sites. Diagonal- 
ization of Hamiltonian (4.4) then leads to a self-consistency equation to be solved for 
the magnitude of the dipole moment. We can, however, be somewhat more general 
than this. Since we neglect the effects of the off-diagonal elements of T i j ,  we may 
consider the three components of the dipole moment separately. Suppose that the a 
component of the dipole moment is of equal magnitude on all sites, but may, for any 
site, he orientated in a positive or negative direction. We thus allow in addition for 
the further possibility of antiferroelectric configurations of dipole moments. Then, 
the Q component of the dipole moment on site j may be written 

(4.7) cc(,") = cc eikeJZ, 
I 0. 

where fie is the magnitude, common to all sites, and k, iS the wavevector associated 
with a set of orientations. h,  is restricted to those values such that = fl 
Cor all sites j .  The a component of the field felt at site i is then given, using 
equation (4.6), by 

(4.8) = pe 1 q p ' k 4  - Ik,.R, - pp,e De"(k,) 
j ( # ; j  

where P " ( k , )  is defined by equation (3.5). Equation (4.8) is the  form of the 
electric 6eld that we use in the Hamiltonian (4.4). 

Equation (4.7). with a = 2. y, z, describes the assumed configuration of dipole 
moments. The range of possible values of hm allows for a range of possible configura- 
tions, e.g. a ferroelectric configuration is obtained by setting k, = (O,O, O), whereas 
k, = ( O , O ,  ./a) (a is an appropriate lattice constant) represents a configuration 
that is antiferroelectric parallel to the z axis. For an arbitrary choice of k,, a self- 
consistent solution yields possible values for the magnitudes, p,. The self-consistent 
solution proceeds as follows. 

Having assumed a configuration of dipoles, of the form given by equation (4.7), 
we diagonalize the Hamiltonian for a site i. The resulting expectation value of 
the dipole moment of site i must be consistent with the assumed configuration of 
dipoles. It is simplest to assume that only one p orbital, say the p, orbital, contributes 
to the dipole moment of a site. This involves no loss of generality, since we have 
made no assumptions about the direction of spatial quantization of the p orbitals: 
all information about the orientation of the p orbitals relative to the crystal axes is 
contained in the dipole sum, Doe(k , ) .  The trial Hartree wavefunction is then a 
suitably antisymmetrized product of N atomic wavefunctions of the form 

a;.l4 t aip, lip,) (4.9) 

Hi = a € C ! p , C i p ,  + M E i L ) ( C : * C ; p '  t c ~ , , c ; , ) .  

where a i s  and ai+& are coefficients (assumed real) to be determined, and the relevant 
part of the Hamiltonian for site i reduces to 

(4.10) 

Solving this simple eigenvalue problem, we find that the lowest-energy state has 
a dipole moment given by 

(4.11) 
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and energy 

E = ;LIE - ;{/le2 + 4pZMZ[D*”(k:,)]2p~}”2 (4.12) 

where we have used the fact that (e’k-’Rc)S = 1. The selkonsistency of the problem 
is evident from equation (4.11). where we have assumed the derived dipole moment 
of site i to be of the form assumed initially, i.e. of the form given in equation (4.7). 
Adding in the last (classical) term of equation (4.4), the total energy per site is 

E = ;A€ - +{A.? t 4 ~ ~ M ~ [ D ~ ~ ( k , ) ] ~ p ~ } ~ ’ ~  + $pDz”(k:,)pz 2 .  (4.13) 

Equations (4.11) and (4.13) always possess a solution 

P L - 5 0  E = O  (4.14) 

i.e. the zero-energy non-dipolar state with all clcctrons in s orbitals. However, for 
densities larger than a critical density 

there is also a solution corresponding to a dipolar state with dipole moment 

(4.15) 

(4.16) 

and energy 

E = l A e  2 - $pM2D”(kL.;) - ~ [ A e 2 / p M 2 D Z 2 ( h l ) ] .  (4.17) 

When this solution exists, i.e. for densities p > pc, we see from equation (4.17) that 
the energy of the dipolar state is negative. Thus, the dipolar state, when possible, is 
energetically stable with respect to the zero-energy nondipolar state. 

We see from equation (4.15), that the critical density at which the dipolar state 
appears depends on the configuration of putative dipoles, characterized by the value 
of I t , ,  that we have assumed. ’lb predict a value for pc, we clearly need to specify 
6,. The particular dipolar state-ferroelectric or antiferroelectric-which in fact 
realized is that characterized by a wavevector kz such that the energy (given by equa- 
tion (4.17)) is minimized. It is, therefore, this wavevector that enters equation (4.15) 
when predicting the critical density for the transition to the El phase. 

We now summarize as follows: For densities lower than p, (as given by equa- 
tion (4.15)), the ground state is non-dipolar with a constant energy of zero. As p 
increases through pc, each atom develops a non-zero dipole moment: 

(4.18) 

Initially, the dipole increases as a function of density with a mean-field exponent 
of 1/2. For higher densities, however, the dipole moment magnitude asymptotically 



5532 

approaches its limiting value of M, owing to the finite basis set that we have assumed. 
The energy per site of the dipolar state is 

M D Winn and D E Logan 

(4.19) 

The wavevector that minimizes the energy of the dipolar state, and thus enters 
equation (4.15), is that for which D z z ( k z )  is a maximum. This wavevector is thus  
also that associated with the bottom of the band of renormalized excitons. Hence, 
the critical density predicted by equation (4.15) is precisely that predicted by the pair- 
ing theory (see equation (3.25)). Further, the second-order nature of the transition 
suggested by the pairing theory (see section 3.4) also results from the Hartree ap- 
proach. Therefore, for the system under study, the Hartree approximation appears to 
describe the transition well. Further, equation (4.14) for p < p, and equation (4.18) 
for p > p ,  give an explicit form for the evolution of the order parameter (which, 
as we argued in section 3, is the magnitude of the site dipole moment) through the 
transition. One feature, however, that the Hartree approximation fails to reproduce 
is the van der Waals binding energy: for densities less than the critical density, the 
ground-state energy is independent of density. A corollary to this is that, in contrast 
to the resuln of the pairing theory, the Hartree approximation predicts a zero density 
of excited sites for p < p,. These discrepancies, however, are not relevant to the 
question of the existence of an El phase. 

Finally, we consider how the above results are altered if one neglects the double- 
excitation terms in the model Hartree Hamiltonian. Assuming ( C ~ ~ C ~ ~ ~ )  to be real, 
this results simply in factors of 1/2 appearing in the terms in the second and third 
lines of equation (210). Solving the resultant Hamiltonian as bcfore, we rccover 
the results of equations (4.14)-(4.19) except that factors of D z * ( k , )  arc rcplaced 
by factors of ( l / '2 . )Dzz(kz) .  In particular, equations (4.14), (4.18) and (4.19) are 
retained unchanged, but the critical density is twice the value given in equation (4.15). 
This doubling of the critical density is in agreement with the resulis of section 3. 

5. Discussion 

In section 3, we studied the model system via the pairing theory, making solely 
the assumption that terms connecting different polarizations could be neglected, an 
assumption we argued was justified for a study of the transition to an El phase. In 
the event, a full study of the effects of non-boson statistics was not found to be 
possible, but we feel that sufficient is known for one to be reasonably confident about 
the occurrence and nature of the transition to the El phase. At a certain critical 
density, for which an expression was given, the model system is predicted to undergo 
a second-order transition to an E1 phase. The importance of the doubleexcitation 
t e r m  on the critical density was emphasized. 

The method for dealing with the doubleexcitation terms (the Bogoliubov trans- 
formation) is specific to systems with translational symmetry. Frenkel EI phases, 
however, have been postulated for some systems that lack translational symmetry, 
e.& expanded fluid mercury [7-IO], and alkali metals in ammonia [14-161 and alkali- 
metal halide [17, 181 solutions. A more general, albeit approximate, approach is 
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provided by the Hartree decoupling scheme. The Hartree approximation is applica- 
ble to disordered, as well as crystalline, systems, and has the added advantage that it 
provides a description of the dipolar state. As mentioned in section 2, however, there 
is no a priori way of knowing how good the Hartree approximation is, and so in sec- 
tion 4 we compared the results with those of the pairing theory for the lattice system 
under study. Excellent agreement was found the expression for the critical density, 
both with and without the presence of the double-excitation terms, was recovered, as 
well as the fact that the transition is second order. Thus, the Hartree approximation 
is certainly adequate for lattice systems, and it seems reasonable to suppose that it 
may also be used for systems that the pairing approach cannot easily deal with, i.e. 
disordered systems. 

We see, therefore, that the model Hamiltonian has a stable El phase at high 
enough densities Whether real systems exhibit such a Frenkel EI phase depends on 
whether the model Hamiltonian (applicable at low densities) is still valid at the critical 
density of the transition. One possible correction to the model Hamiltonian, which 
has already been mentioned, is to replace the matrix elements (2.2) by a more general 
form, taken, for example, from detailed spectroscopic calculations [lo]. Although this 
will change the numerical value of the critical density, it will not change any of the 
qualitative conclusions; in particular, the model system will still have a stable El phase. 
Alternatively, one may include the two classes of term described after equation (24), 
which were neglected in constructing Hamiltonian (2.1). One possible effect of these is 
to lead to the formation of polyexcitons [29-311 (although such effects are expected 
to be more important for polar molecules [30, 311) and, as yet, the consequences 
of this for the putative E1 phase are not known. The most important correction, 
however, is to include oneelectron hopping matrix elements. If a real system does 
posses a transition to a Frenkel EI phase then as the density is increased further, 
the oneelectron hopping elements will cause the Frenkel El state to evolve into a 
Mott-Wannier EI state, followed by a metallic phase via a Mott unbinding transition 
[42]. In many systems, however, the effects of the one-electron hopping elements will 
be so dominant that there is a transition directly from the non-dipolar insulator to a 
metallic phase, with no intervening El phase. 

We should also point out that we have assumed a zero-temperature formalism, 
so that the number density of sites is the only thermodynamic variable. Within this 
picture, the El phase of a lattice-based system possesses a regular array of dipoles, 
characterized by some wavevector. The situation is modified at non-zero tempera- 
tures. As the temperature is increased, for a given density above the critical density, 
the correlation between dipoles on different sites decreases until, at a high enough 
temperature, the long-range ordering of dipoles vanishes, i.e. there is a transition to 
a paraelectric phase. Alternatively, for a constant but high temperature, one expects 
a transition at a density p,(T)  to a dipolar state that is paraelectric rather than 
ferroelcctric [lo]. 

Ib get an idea of the thermal energies required to destroy the long-range ordering 
of dipoles inherent in the results of section 4, consider the energy needed to invert a 
dipole on a single site, i, namely 

2 PiTi jPj .  (5.1) 
j ( # i )  

Assuming that all dipoles are aligned parallel or antiparallel to the z axis, and using 
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equation (4.7), expression (5.1) may be written as 

M D Winn and D E Logan 

2pp: D ” ” ( k , ) .  

Finally, substituting for pz  from equation (4.18) and for D ” * ( k , )  from equa- 
tion (4.15), the energy required takes the form 

When p/p, = 1.3, this energy is half the zerodensity excitation energy, Ac, and 
consequently may be of the order of an e\! Thus, as one passes into the El phase, 
there is only a relatively narrow range of density before extremely high temperatures 
are needed to destroy the dipole ordering. 

We have also assumed in this paper that the site density, p, is a thermodynamic 
variable that we may choose at will, i.e. that d o s  not depend on the electronic 
structure that we are investigating. The significant changes in the electronic structure 
that accompany the transition to an El phase, however, may have an effect on the 
structure that the ions adopt 124, 251. More specifically, one consequence of the 
transition to an El phase may be that the system is rhcrmodynamically unstable for 
a range of densities encompassing the critical density of the transition, p,. If this is 
the case, then, as the density is increased, the system will jump discontinuously from 
some density below the calculated second-order transition to another density above it. 
Thus, the obselved transition will be first order, and accompanied by a discontinuous 
volume change 1431. 

The above discussion is appropriate to an infinite system. We conclude by pre- 
senting a simple example of a finite system: a two-site system in which each site is 
associated with one s orbital and three p orbitals. The two sites are labelled 1 and 2, 
and are separated by a distance R. We assume the internuclear axis to lie parallel to 
the z axis. The model Hamiltonian, equation (2.5), then rcduces to 

where we have defined the zero of energy such that c l *  f cZs = 0, and we have 
assumed Ac, = Ae for i = 1,2. For this system, the cross-terms in P ~ ~ ’ s p b  
(a # p) are all zero. 

This simple two-site problem may be solved within the Hartree approximation in 
precisely the way described in section 4. One then arrives at the following solution. 
For internuclear separations greater than a critical separation, R,, the ground state is 
non-dipolar with a constant energy of zero. As the internuclear separation decreases 
through R,, however, both sites develop a non-zero dipole moment, with both dipoles 
aligned along the internuclear axis and orientated in the same direction. The critical 
separation is given by 
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An exact solution for Hamiltonian (5.4) yields a different picture. For this simple 
example, there are 16 possible electron configurations, allowing for each electron to 
be in one of four possible orbitals. Diagonalising Hamiltonian (5.4), we therefore have 
16 emct eigenstates of the system. The ground state is a mixture of the configuration 
with both electrons in s orbitals and the three configurations with both electrons in 
p, orbitals (a = 2, y, z), and has an energy Ac - ( A ?  f 6 M 4 / R 6 ) ' I 2 .  The lowest 
excited state is a mixture of the configuration with the electron on site 1 in an s 
orbital and the electron on site 2 in a pz orbital, and the configuration with the 
electron on site 1 in a p, orbital and the electron on site 2 in an s orbital, and has 
an energy of Ae  - Z M 2 / R 3 .  In the language of section 2, the ground state contains 
only configurations with even numbers of excited sites, and thus possesses no dipole 
moment. There is clearly always a finite energy gap between the ground state and 
the lowest excited state, which contain a single excitation, and thus a finite electric 
field is required to produce a dipolar state. 

Hence, with no external electric field present, the Hamiltonian (5.4) does not 
possess a dipolar ground state, and the results of the Hartree approximation are 
clearly incorrect. Similar conclusions follow from an analysis of a linear threesite 
system with an sp3 basis. Inherent in the Hartree Hamiltonian is the possibility of a 
term that connects configurations with even numbers of excited sites to configurations 
with odd numbers of excited sites, thus producing a dipolar state (i.e. the term in 
the effective electric field, E*) .  This term is absent in the exact Hamiltonian. In an 
infinite system, this term mimics well the behaviour of the exact Hamiltonian, but, 
as we have just seen, it leads to erronenus results in small finite systems. How one 
interpolates corrcctly between the behaviour of macroscopic systems and that of small 
clusters is still an open problem. 
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